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On Some Problems in the Formulation of Optimum Population 
Policies when Resources are Depletable 

Swapan Dasgupta and Tapan Mitra 1 ) 

1. Introducdon 

In recent years, considerable attention has been focused on the study of optimal deple-
tion patterns of exhaustible resources. The existing models are mostly concerned with the 
possible mitigating effects of technological progress or capital accumulation in the growth 
process of economies facing exhaustible resource constraints [ see, for example, Dasgupta, 
1973; Dasgupta/Heal; Solow; Stiglitz; lngham/Simmons, and others ). Population is as-
sumed exogenaus to these models, and the concern is with jointly solving the optimal de-
pletion of an exhaustible resource, and optimal investment in augmentable capital goods. 

The interrelationship between population policies, and depletion patterns of exhausti-
ble resourceshas been studied by Koopmans (1973, 1974], who poses the problern as a 
trade-off between the survival time of a fixed population and its consumption rates. This 
line of analysis has been extended by Lane (1975), who allows the population itself tobe 
a control variable, and also allows for a conservationist motivein the optimality exercise. 
Neither study includes the aspect of capital accumulation offsetting the effect of a (rapid-
ly) depleting resource stock. However the study by Lane [ 1977] establishes a link 
between the interesting study of Koopmans, and the traditionalliterature on optimum 
population, without exhaustible resource constraints, studied by Meade [1955],Dasgupta 
[1969],Lane [1975],Pitchford (1974] and others. 

In this paper, we attempt a systematic study of optimum population policies in a 
model in which capital, labor, and an exhaustible resource produce an output which can 
be consumed or accumulated as capital. The total stock of the resource is given, and the 
resource use over the (infinite) planning horizon must not exceed this stock. Population is 
"freely" controllable, and, so, like Dasgupta [ 1969], we are interested in "first-best solu-
tions". Individual "Utility" is derived from consumption (per capita), and "Welfare" is 
individual utility tirnes the population at each date. The reason for adopting this Classical 
Utilitarian view of"Welfare" isthat with the alternative Average Utilitarian view, there 
does not even exist a Pareto-optimal program [see Proposition 3.1]. Furthermore, we fol-
low Meade [1955] in assuming that when consumption of an individual is "low", his utili-
ty is negative, when it is "high", his utility is positive. We show that this is a necessary 
condition for the existence of a Pareto-optimal program, with the Classical Utilitarian 
Welfare function [see Proposition 3.2]. Optirnality is then defined in terms ofthe "maxi-

1 ) Research of the second author was partially supported by a National Science Foundation Grant. 
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misation" of the discounted or undiscounted sums ofWelfares, by a suitable version of 
the "overtaking criterion". 

We show that Optimal programs can be characterized in terms of a) the Ramsey Rule 
of capital accumulation, b) the Meade Rule of population, c) the Hotelling Rule of alloca-
tion of an exhaustible resource, and d) the transversality condition that the present value 
of capital and resource stocks converge to zero, over time [ see Theorems 4.1-5.3 ]. 

We use this characterization to show that when future welfares are undiscounted, an 
optimal program does not exist, under a set of quite realistic assumptions [ see Theorems 
5.1 and 5.3]. This is a somewhat disturbing comment on the Classical Utilitarian view of 
welfare. We note that similar difficulties are also encountered, when exhaustible resources 
arenot treated explicity [for example, inDasgupta, 1969]. 

In Theorem 6.1, we show that when future welfares are discounted, an optimal pro-
gram does exist. We note that the methods of proving the existence of an optimal pro-
gram, in models where population is exogenous, and exhaustible resources are either ab-
sent [ see Gate; Brack; Brack/GaZe] or present [ see Dasgupta/Heal], cannot be applied to 
our case. Similarly the methods used in models where population is controllable, but ex-
haustible resources are absent [ see Dasgupta] also become inapplicable. Thus, our method 
of proof is new, although it borrows ideas, at several points, from the above stated "tradi-
tional methods". 

While Theorem 6.1 might appear to lay at rest questions raised about the appropriate-
ness of the Classical Utilitarian view of welfare [in the sense of Koopmans' "mathematical 
screening"], Theorem 7.1 raises fresh doubts. Here, we show that when future utilities are 
discounted, an optimal program must be an "extinction program". That is, it is optimal 
to have the extinction of the human race in finite time. We note that this result holds, 
even if there are feasible programs with stationary population, for whom "life is enjoya-
ble" at each date [ utility of individuals at various dates are bounded away from zero ]. lt 
seems that the Classical Utilitarian view places too small a "penalty" on the extinction of 
the economy, so that with resources depleting and the future being discounted, it is opti-
mal not to have a "future" at all, beyond a finite time. 

2. TheModel 

Consider an economy with a technology given by a production function, G, from R! 
to R+. The production possibilities consist of capital input, K, exhaustible resource input, 
D, Iabor input, L, and current outputZ = G (K, D, L) for (K, D, L) ;;;;. 0. 

For simplicity, we will identify "population" with "Iabor input", at each date, and use 
the terms interchangeably. Capital will be assumed not to depreciate. Thus total output, 
Y, can be defined as G (K, D, L) + K for (K, D, L);;;;. 0. A total output function, F (from 
R! to R+) can be defined by 

F(K, D, L) = G (K, D, L) + K for (K, D, L);;;;. 0. (2.1) 

The production function, G, is assumed to satisfy: 

(A.1) Gis concave, homogeneaus of degree one, and continuous for (K, D, L) ;;;;. 0; it is 
continuously differentiahte for (K, D, L) 0. 



(A.2) Gis non-decreasing in K, D, L for (K, D, L);;;;: 0; (GK, GD, GL) 0 for 
(K, D, 
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The initial capital and labor inputs, f_ and f, and the initial available stock of the ex-
haustible resource, 1):!, are considered to be historically given and positive. A feasible pro-
gram is a sequence (K, D, L, Y, C> = (Kt' Dt' Lt' Yt' Ct) satisfying 

Yt = F(Kt, Dt, Lt)' Ct = Yt- Kt+l for t;;;;: 0 

(Kt' Dt' Lt, Yt, Ct);;;;: 0 for t;;;;: 0 

Lt = 0 implies Lt+l = 0 for t;;;. 1. 
I (2.2) 

Associated with a feasible program (K, D, L, Y, C) is a sequence ofresource stocks 
(M) = <Mt>, given by 

Mo =g, Mt+l =Mt-Dt for t;;;.o. (2.3) 

By (2.2),Mt;;;;: 0, andMt+l fort;;;;: 0. 
A feasible program (K, D, L, Y, C) is called positive if Lt > 0 fort;;;;: 0. It is interior if 

it is positive and (Kr, Dr) 0 for all t;;;;: 0. It is regular interior if it is interior, and Cr > 0 
fort;;;;: 0. 

Fora positive program (K, D, L, Y, C) we denote, fort;;;;: 0, 

(Kt/Lt) = kt; (Dt/Lt) = dt } 
(2.4) 

(CrfLt) = ct; (Yt/Lt) = Yr· 

Preferences are represented by a utility function, u, from R+ to R. The utility function 
is assumed to satisfy: 

(A.3) u is strictly increasing for c;;;;: 0. 
(A.4) u is continuous and concave for c;;;;: 0; it is continuously differentiable for c > 0. 
(A.5) u' (c)-+ oo as c-+ 0. 
(A.6) There is 0 < b <"",such that I u (c) b for c;;;;: 0.2 ) 

2 ) (A.6) is used only in proving the existence of optimal programs in the discounted case i.e. in 
Section 6. It may be noted that if there is an optimal program which is interior then from the Meade 
Rule (4.2 in p. 10) it follows that: ct u' (ct)- u (ct) = u' (ct) FLt > 0 or u (ct)fct < u' (ct)· Since 
under (A.7) there exists c suchthat u (c)/c > u'(c) for c > c this means u (ct) < u (c) for all t. (A.6) 
guarantees that the utility sums along any feasible path is bounded above. Hence one can use the Can-
tor Diagonal process to establish existence of a program with largest utility sum as in Lemma 6.3 when 
the welfare function W (C, L) is continuous. It may be noted that continuity of W (C, L) at C = 0 or 
L = 0 (or alternatively defining W (C, L) at C = 0 or L = 0 ensuring continuity) may be a problern 
when u (c) is not bounded. 
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3. On Average and Classical Utilitarian Social Welfare Functions 

It has been observed in the literature [see, for example, Dasgupta, 1969, p. 295] that if 
we take the index of social welfare to be the Average Utilitarian one [V ( C, L) = u (Cf L)], 
and formulate our criterion of optimality in terms of the sum of these welfares then there 
does not exist an optimal program. Quite apart from the ethical objections to the Average 
Utilitarian index, this consequence is considered to be a strong reason for rejecting it as a 
measure of social welfare. We feel that the case against adopting the Average Utilitarian 
index is further strengtherred by showing that, under this valuation, even (interior) 
Pareto-optimal programs do not exist. We demonstrate this in Proposition 3 .1. 

In adopting the Classical Utilitarian index ofsocial welfare [W (C, L) =Lu (C/L)], it 
is assumed in addition that when the consumption rate of an individual is "low", his 
utility is negative; when it is "high", his utility is positive [see, for example,Dasgupta, 
1969, p. 296]. We demonstrate (in Proposition 3.2) that a necessary condition for the 
existence of (interior) Pareto-optimal programs, under the classical Utilitarian valuation, 
isthat the utility function, u, has the above-stated properties. 

A Classical Utilitarian welfare function, W ( C, L ), is defined by 

W(C,L)=Lu(C/L) for L>O; W(C,L)=O for L=O. (3.1) 

AnAverage Utilitarian welfarefunction, V(C, L), is defined by 

V(C, L) = u (C/L) for L > 0. (3.2) 

Note that we leave V ( C, L) undefined for L = 0, as there is no "natural choice" for its 
value. The choice of W (C, L) = 0 for L = 0 makes W a continuous function of (C, L), for 
(C, L);;;;;. 0, under (A.4), (A.6). This is the reason for its choice in (3.1). 

Clearly Pareto-Optimality and Optimality can be defined in terms of either of the 
valuations given by (3.1) and (3.2). 

A feasible program (K, D, L, Y, C) is called C-Pareto optimal if there is no feasible pro-
gram <K', D', L', Y', C'> satisfying W (c;, L;);;;;;. W (Cr, Lt) for all t;;;;;. 0, and W (C;, L;) > 
W (Cr, Lr) for some t. A positive program (K, D, L, Y, C) is called A-Pareto optimal if 
there is no positive program <K', D', L', Y', C') satisfying V (c;, V (Ct, Lt) for all 
t;;;;;, 0, and V (C;, >V (Ct, Lt) for some t. 

To define optimality, we consider a discount factor, o, where 0 < o ..;;; 1, to be given. 
A feasible program <K*, D*, L *, Y*, C*) is C-optimal if 

T 
lim sup L ot [W (Ct, Lt)- W (Ct*• L *)] ".;;; 0 

T->oo t=O t 
(3.3) 

for every feasible program <K, D, L, Y, C). A positive program <K*, D*, L *, Y*, C*) is 
A-optimal if 

(3.4) 

for every positive program <K, D, L, Y, C>. 

Proposition 3.1: Under (A.l)-(A.6), there is no interior A-Pareto-optimal program. 
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Proof: Suppose, on the contrary, that there is an interior program (K, D, L, Y, C), which 
isA-Pareto optimal. Consider the sequence <K', D', L', Y', C') given by: 

= (Ko, Do, L 0 , Y 0 ), = C0 + (1/2) K 1 ; (K;, n;, Y;, c;) = 

(1/2) (Kt, Dt' Lt, Yt, Ct) 1. Clearly (K', D', L', Y', C') is an interior program. 
>Co (sinceK1 >c0 ,and V(C0 ,L0 ).Also, 

c; = (1/2) Ct, and = (1/2) Lt 1. So = ct, and V (c;, = V (Ct, Lt) for 
t 1. Hence, (K, D, L, Y, C) is not A -Pareto optimal. This contradiction establishes the 
Proposition. II 

Remark: It is clear from Proposition 3.1 that there is no interior A-optimal program 
either, a fact which has been noted in the literature. In view of this, in the rest of the 
paper, we will be concerned only with the notions of C-Pareto optimality and C-optimali-
ty. Also, since there is now no scope for confusion, we will refer to these terms simply as 
Pareto optimality and optimality respectively. 

We now proceed to consider the following additional assumption on u: 

(A.7) There is 0 < c < 00, such that u (c) < 0 for 0 < c < c; u (c) > 0 for c > c; - - -
u (f) = 0. 

Proposition 3.2: Under (A.1)-(A.6), if there exists an inferior Pareta-optimat progr_am 
(K, D, L, Y, C), then the utility function, u, satisfies (A.7). 

Proof: Given (A.3), the utility function can be one of three types: (i) u (c) < 0 for c 0; 
(ii) u (c) 0 for c 0; (iii) u (c1 ) < 0 for some c 1 0, and u (c2 ) > 0 for some c2 0. 
If there is an interior Pareto optimal program (K, D, L, Y, C), we will show that cases (i) 
and (ii) cannot occur. 

If case (i) occurs, we construct a sequence (K', D', L', Y', C) as follows: 
( , , , , , ( I ) ( , , , y' C') K 0 , D 0 , L 0 , Y0 ) = (K0 , D0 , L 0 , Y 0 ), C0 =Co + 1 2 K1; Kt, Dt' Lt, t' t = 
(1/2) (Kt' Dt' Lt' Yt, Ct) 1. Then, <K', D', L', Y', C') is an interior program. 
Also, = C0 + (1/2) K 1 > C0 , so > c0 , and W > W (Co, Lo). Also, 
c; = (1/2) Ct, = (1/2) Lt 1. So W (c;, = (1/2) W (Ct, Lt) W (Ct, Lt), 
since u (c) < 0 for c 0. Hence (K, D, L, Y, C) cannot be Pareto-optimal, a contradic-
tion. Thus, case (i) cannot occur. 

If case (ii), occurs, then for c 0, and 0 < 0 1, u (Oe)= u [Oe+ (1- 0) 0] 
8u (c) + (1-0) u (0) 8u (c), since u (0) 0. We construct a sequence (K', D', L', 
Y', C') as follows: = (K0 , D0 , L 0 , Y 0 , C0 ); (K;, n;, L;) = 

(Kt' Dt, 2Lt) 1, Y; = F(K;, n;, and c; = Y;- K;+l 0. Then, 
W = W (C0 , L 0 ); also, 1, c; > Ct, by (A.2), so W (c;, L;) > 

L; u ((1/2) ct) = 2Lt u ((1/2) ct) 2Lt (1/2) u (ct) = Lt u (ct) = W (Ct, Lt). Since 
(K', D', L', Y', C') is clearly an interior program, so (K, D, L, Y, C) is not Pareto-optimal, 
a contradiction. Hence, case (ii) cannot occur. 

Thus, case (iii) must occur. Since u is continuous, there is some 0 < f < 00 , suchthat 
u (c) = 0. Since u is increasing, c > 0, and u (c) < 0 for 0 < c < c; u (c) > 0 for c > c. II ,..., ,_...., ,..., ,..., 
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In view of Proposition 3 .2, we will assume that (A. 7) holds, in the rest of the paper. 
Note that, under this additional assumption, tht.re is c > 0, satisfying (i) E < c < =, and 
(ii) u (c) - u' (c) c = 0. 

4. Characterization of Optimality 

In this section, we will provide necessary and sufficient conditions for a positive pro-
gram to be optimal. This characterization is used in Section 5 to exarnine the question of 
existence of an optimal program, when future utilities are undiscounted. It is also used in 
Section 7 to establish an asymptotic property of optimal programs, when future utilities 
are discounted. 

For our purpose, we will assume that the three types of inputsareessential in produc-
tion, and that the marginal product of the exhaustible resource is infinite at zero resource 
input. 

(A.8) G (O,D, L) = G (K, O,L) = G (K, D, 0) = 0 

. For (K, L) 0, GD (K, D, L)--+ oo asD 0. 

Furthermore, following Mitra [ 1978], we assume that the exhaustible resource is "impor-
tant" in production, in the sense that the share of the resource in current output is 
bounded away from zero. 

(A.9) ß = inf [D GD (K, D, L)/G (K, D, L)] > 0. 
(K,D,L)>O 

Theorem 4.1: Under (A.l)-(A.9), ifa positive program (K, D, L, Y, e> is optimal, then 

(i) it is regular inferior 

(ii) u' (c,) = ou' (ct+l)FK 
t+ 1 

0 (4.1) 

(iii) [c, u' (c,)- u (c,)] = u' (c,) FL 1 (4.2) 
t 

(iv) [FD /Fn ]=FK 0 (4.3) 
t+ 1 t t+ 1 

(v) a) lim o' u' (c,)Kt+l = 0; b) lim Mt= 0. (4.4) t--> 00 t--> 00 

Proof: First, we establish that et > 0 0. Since (K, D, L, Y, e> is optimal, e, > 0 
for some t. If et = 0 for some period, then we can find a period s, suchthat either 
a) es= 0, es+l > 0, or b) es> 0, es+l = 0. Using (A.S), in either case, (K, D, L, Y, e) 
cannot be optimal, since (L 8 , Ls+l) 0. So, e, > 0 0. By (A.8), Kt > 0 0. 

We claim next, thatD, > 0 0. Clearly,Dt > 0 for some t. If Dt = 0 for some 
period, then we can find a period, s, suchthat either a)D8 = 0, Ds+l > 0, or b) Ds > 0, 
Ds+l = 0. In either case, (K, D, L, Y, e> cannot be optimal, by using (A.8), and 
(K8 , L 8) 0, (Ks+l, Ls+l) 0. Hence, Dt > 0 0. Thus, (K, D, L, Y, C) is a 
regular interior program, which is (i). 
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Fort;;;;. 0, the expression 

Lt u {[F(Kt, nt, Lt)- KJ 1 Lt} + oLt+l u {[F(K, Dt+l, Lt+l)- Kt+ 2J 1 Lt+l} 

must be maximised at K = Kt+l' among all K;;;. 0, satisfyingK .;;;;.F(Kt, Dt' Lt) and 
F (K, Dt+l, Lt+l);;;. Kt+ 2 . Using (i), 

Lt u' (ct) [-1/Lt] + oLt+l u' (ct+l) [Fk I Lt+d = 0 
t+ 1 

which yields (4.1) directly. 
Fort;;;;. 1, the expression Lu {[F (Kt' Dt, L)- Kt+l] I L} must be maximized at 

L = Lt, among allL > 0, satisfyingF(Kt' Dt' L) ;;;.Kt+l" Using (i), we have 

u (ct) + Lt u' (ct){[Lt FL - CtJIL;} = 0 
t 

which yields (4.2) immediately. 
Fort;;;;. 0, the expression 

Lt u {[F(Kt, D, Lt)- Kt+lJILt} + 

+oLt+l u{[F(Kt+l'Dt +Dt+l -D,Lt+l)-Kt+2JILt+l} 

must be maximized at D = D t, among all D ;;;. 0, satisfying D .;;;;. D t + D t+ 1 , 

F (Kt, D, Lt) ;;;.Kt+l, andF (Kt+l, Dt + Dt+l- D, Lt+l);;;. Kt+ 2 . Using (i), we get 

Lt u' (ct) [FD ILt] + OLt+l u' (ct+l) [- FD ILt+l] = 0 which yields, on simplifica-
t . t t+ 1 
IOn, 

Using (4.1) and (4.5) yields (4.3). 
Clearly, there is no feasible program, <K', D', L', Y', C'> = Lt fort;;;. 0, 

c;;;;;. Ct fort;;;. 0, c; > Ct for some t. Hence, following the proof of Theorem 4.1 in 
Mitra [1978], 

lim Mt= 0 and lim [Kt+liFD ] = 0. 
f-+oo f ..... oo t 

Note that by using (4.5) repeatedly we have 

[u'(c 0 )FD JIFD =otu'(ct). 
0 t 

Using (4.6) and (4.7), we obtain (4.4). 

(4.5) 

(4.6) 

(4.7) 

Remarks: In Theorem 4.1, (4.1) is the well-known "Ramsey-rule" for optimal invest-
ment in the capital good. Similarly, (4.2) is the "Meade rule" for an optimum population 
[see Meade, p. 91; or Dasgupta, 1969, p. 299]. The marginal condition given by (4.3) is 
the "Hotelling rule" for optimal depletion of an exhaustible resource [ see, for example, 
DasguptaiHeal, p. 11]. Finally, (4.4) is the transversality condition that the present value 
of the capital and resource stocks converges to zero as t becomes indefinitely large. lt 
should be noted that (4.1), (4.2), (4.3) aretobe expected, as the relevant variables (capi-
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tal, population and exhaustible resource use) are "freely" and independently controllable. 
The interesting difference, caused by the presence of exhaustible resources, is in ( 4.4). In 
the parallel exercise of optimum population without exhaustible resources, Dasgupta 
(1969, p. 298] notes that (4.1), (4.2) and (4.4) a) are sufficient conditions of optimality. 
Furthermore, these conditions are necessary when 0 < o < 1. However, if o = 1 [ the dis-
count rate is zero] then (4.4) a) is generallynot necessary. In the present exercise, irre-
spective of the value of o, ( 4.4) is a necessary condition of optimality of a positive pro-
gram. 

Theorem 4.2: Under (A.l )-(A.9), if a regular interior program (K, D, L, Y, C} satisfies 
(4.1)-(4.4), then there is a price sequence (p, q, w}, with (pt-l, qt, wt) 0 0, 
suchthat 

otw (Ct' Lt)- Pr Ct + wt Lt otw (C, L)- ptc + wt L 

for (C, L) 0, t 0 (4.8) 

ptYt -pt-l Kt -qtDt- wt Lt -pt-l K -qtD- wt L 
for (K, D, L) 0, Y= F(K, D, L), t 0 (4.9) 

qt = qt+l 0 (4.10) 

lim [pt-1 Kt + qtMt] = 0. 
f-+oa 

Proof: Define (pt-l' qt, w1) as follows: 

Pr=otu'(ct)' qt=u'(co)FDo' wt=ptFL 
t 

P_l =po I FK 0 • 

For L > 0, 0, W (C, L) is a concave differentiahte function of (C, L). Also, 
(aWjaC) = u' (c) and (aWjaL) = u (c) -cu' (c). So, for 0, L > 0, we have 

(4.11) 

(4.12) 

otw (C, L)- otw (Ct, Lt),;;;;; otu' (ct) (C- Ct) + ot (u (ct)- ct u' (ct)] (L- Lt) 

= otu• (ct) (C- Ct)- otu• (ct) FL (L - Lt) 
t 

[using (4.2)] 

[ using (4.11)]. 

Rearranging terms yields (4.8), for O,L > 0. Note that otw (C L) = otu' (c) C + t , t' t t t o [u (ct) -ct u (ct)]Lt since W (C, L) is homogeneaus ofdegree one for O,L > 0. 
Hence, otw (Ct, Lt)- Pr Ct + wt Lt = 0. Thus, if C 0, and L = 0, (4.8) is true trivial-
ly, since W (C, L) = 0. Thus, for C 0, L 0, (4.8) is established. 

For (K, D, L) 0, we have 

F(K, D, L) -F(Kt' DtLt)..;;FK (K -Kt) +FD (D-Dt) +FL (L -Lt). 
t t t 

Multiplying through by p1, and using (4.1), (4.3), (4.12), 
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Pt F (K, D, L)- Pt F (Kt' Dt, Lt) (K- Kt) + qt (D- Dt) + wt (L- Lt). 

Rearranging terms gives us (4.9) for (K, D, L) 0, Y = F(K, D, L). Note that since Fis 
homogeneaus of degree one, so F (Kt, Dt, Lt) = F K/t + FD 1Dt + FL/r Hence 

Pt F (Kt' Dt, Lt) = Pt_ 1 Kt + qt Dt + wt Lr Thus, if (K, D, L);;;. 0, and (K,D,L) > > 0, 
then by (A.8), G (K, D, L) = 0, and ( 4.9) is trivially true, since p t < p t-1 by ( 4.1 ). Thus, 
for (K, D, L);;;. 0, Y = F (K, D, L ), ( 4.9) is established. 

Finally, using ( 4.4 ), and noting from ( 4.12), that q t is constant over time, ( 4.1 0), 
(4.11) follow. II 

Remark: Theorem 4.2 provides a competitive price characterisation of an optimal pro-
gram. 

Theorem 4.3: Under (A.1)-(A.9), if a feasible program (K, D, L, Y, C) has associated 
with it a price sequence (p, q, w), with (pt_1, qt' wt);;;. 0 fort;;;. 0, satisfying (4.8), (4.9), 
( 4.1 0), ( 4.11 ), then (K, D, L, Y, C) is optimal. 

Proof: Let <K', D', L', Y', C') be a feasible program. Using (4.8), we write fort;;;. 0 

otW (c;. otw (Ct, Lt) (c;- Ct) + wt (Lt- L;) 

= ptY;- ptK;+1 - ptYt + ptKt+1 + wtLt 

= fpt-1K; + qtD; + -pt-1Kt -qtDt- wtLt] + 
+ fptY;- Pt-1K;- qtD;- wtL;]- [ptYt- Pt-1Kt- qtDt- wtLt] 

-ptK;+1 -wtL;+ptKt+1 +wtLt 

fpt-1K; + qtD; + Pt-1Kt- qtDt- wtLt] 

- fptK;+1 + -ptKt+1- wtLt] {by (4.9)} 

=pt-1 (K;-Kt)-pt(K;+1-Kt+1)+qt(D;-Dt). 

5. The Nonexistence of Optimal Programs when Future Welfaresare Undiscounted 

In this section, we examine the question of existence of an optimal program when 
future welfares arenot discounted. We show that, under one of two alternative additional 
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assumptions, there does not exist an optimal program. One assumption is that there is a 
feasible program with constant popu1ation, which can produce a (current) output 
sequence bounded away from zero. The other is that the share of capital in current out-
put is bounded away from zero. 

Neither of these assumptions is terribly unrealistic. In fact, if these assumptions are 
not satisfied, the model becomes somewhat uninteresting. Specifically, if the first assump-
tion is not satisfied, there does not seem to be too much point in sticking to an infinite-
horizon model. If the second assumption is violated, the role of capital accumulation in 
off setting the exhaustible resource factor is not captured properly, as capital is treated as 
"unimportant" in production. But the consequence of either of these assumptions is that 
there does not exist an optimal program, which is somewhat disturbing, if one adopts the 
"mathematical screening" viewpoint of Koopmans. 

We note, however, that the result is not totally unexpected, since in exercises on opti-
mum population without exhaustible resources, a similar difficulty is encountered by 
Dasgupta [1969]. 

Lemma 5.1: Und er (A.1 )-(A.9), and o = 1, if (K, D, L, Y, C) is an optimal pro gram, 
then 

T 
W (Ct, Lt) is convergent. 

t=O 
(5.1) 

Proo[: If Lt = 0 for some t = T, then Lt = 0 T, and W (Ct, Lt) = 0 T. In 
this case ( 5 .1 ) is trivial. 

Otherwise Lt > 0 0. In this case (K, D, L, Y, C) isapositive program which is 
optimal. Hence, by Theorems 4.1, 4.2, there is a price sequence (p, q, w), with 
(pt, qt, wt) 0 0, suchthat (4.8)-(4.11) hold. Using the homogeneity of degree 
one, of Wand F, we then have 

So 

W (Ct, Lt) = ptCt- wtLt = ptYt- ptKt+l- wtLt 

= [ptYt -pt-lKt -wtLt -qtDt] + [pt-lKt -ptKt+l] + qtDt 

= [pt-lKt- ptKt+d + qtDt = [pt-lKt- PtKt+d + qoDr 

T T 
W(Ct,Lt)=[p-lKO-pTKT+l]+qo Dt 

= [p_1Ko -pTKT+l] +qT+l LM-Mr+J 

The side converges by (4.11), as T-'; oo, so the left-hand side converges too. In 

fact, W (Ct, Lt) = p_1 K + q0 M· This establishes (5.1). II 
Now we consider the following additional assumption: 

(A.10) There is!!fef!_sibf! program (K, 15, I, Y, C> with Lt = k, 0, and 
inf G (Kt, Dt, Lt) > 0. 

t>O 

For necessary and sufficient conditions on G, suchthat (A.lO) is satisfied, see Cass/Mitra 
[1979]. 
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Theorem 5.1: Under (A.l)-(A.lO), and ö = 1, there does not exist an optimal program. 

Proof: Let inf G (Kt, Dt' Lt) = d > 0. Clearly, (K, D, [, Y, C> is an interior program. 
t;;.O 

Defme u ((f + c)/2) = e. Then e > 0. LetJ be a positive integer suchthat [ Jßd/f];;;;. 
;;;;. [f. + c]. Choose 0 <X< 1, suchthat (1/X);;;;. 21 . 

Define a sequence (K, D, L, Y, C) as follows: (K0 , L 0 , D 0 , Y0 ) = (K0 ,L0 ,D0 , Y0 ); 

Kt =AKt, Dt =Dt, Lt = X[t =X]; for t;;;;.1, Yt =F(Kt, Dt, Lt) for t;;;;.l; 
Ct = Yt- Kt+ 1 fort;;;;. 0. Clearly, C0 > C0 > 0. We will show that Ct > 0 fort;;;;. 1, so 
(K, D, L, Y, C) is a feasib1e program. We check this fact with the following calculations. 
Fort;;;;. 1, G (Kt' Dt, Lt) = G (XKt, jjt' XLt) ='AG [Kt' (Dt/X),Lt] > 

- J- - J - j- - - j-1 - - - - -;;;;.'AG (Kt, 2 Dt, Lt) =X .2: [G (Kt' 2 Dt' Lt)- G (Kt, 2 Dt, Lt)] + XG (Kt,-Dt,Lt). ,=1 
Now forJ;;;;.j ;;:;.1, we haveG (Kt' 2i Dt, [t)- G (Kt, 2i·1 Dt, [t) > 
(1/2) GD [Kt, 2i Dt, [t] 2i Dt > (1/2) ßG [Kt' 2i Dt' [t] > (1/2) ßd. Hence, fort;;;;. 1, 

- j- - - - -G (Kt, 2 Dt, Lt)- G (Kt, Dt' Lt);;;;. (1/2) Jßd. Thus, fort;;;;. 1, we have 

Ct = G (Kt' Dt' Lt) + Kt- Kt+ 1 

=X G (Kt, (Dt/X),Lt) +'AKt -t..Kt+ 1 

;;;;. X G (Kt,Dt,[t) + (1/2) XJ ß d + XKt- t..Kt+ 1 

=X Ct + (1/2) XJ ß d > 0. 

Since, fort> 1, Ct;;;;. (1/2) A J ß d, so ct > [Jßd/2k], and u (ct) > e fort> 1. So 
T 

Lt u (ct);;;;. 'Af::_e fort> 1. Thus, as T-+ oo, 2: W (Ct, Lt)-+ 00• 

t=O 
If there is an optimal program, (K*, D*, L *, Y*, C*), then by Lemma 5.1, 

00 

L W (c;, L7) is convergent. But since (K, D, L, Y, C) is a feasible program with 
t=O 

T 
L W (Ct, Lt)-+ oo as T-+ oo, so (K, D, L, Y, C) could not be optimal. 

t=O 
We now consider an alternative additional assumption: 

(A.ll) a= inf [KGK(K,D,L)/G(K,D,L)]>O. 
(K,D,L)>O 

(A.ll) states that the share of capital in current output is bounded away from zero. [By 
(A.9), a: < 1]. 

Theorem 5.2: Under (A.l)-(A.9), (A.11), and ö = 1, there does not exist an optimal 
pro gram. 

Proof: Define g(K) = G (K, 1, 1) for K > 1. Theng' (K) = GK (K, 1, 1), and 
[Kg' (K)/g (K)] = [K GK (K, 1, 1)/G (K, 1, 1)] > a:. So [g' (K)/g (K)] > [a/K], and 
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X 

(d/dK) [logg (K)];;;. (d/dK) [log K"']. For x # 1, we have f (d/dK) [logg (K)] dK # 
X 1 
f (d/dK) [logK"'] dK. So logg (x) -logg (1) ;;;.Iogx"' -log 1"' =log x"', and 
1 "' log g (x) ;;.log [g (1) x"'). Then g (x) ;;;;;. g (1) x"' for x ;;;;;. 1, and G (K, 1 , 1) ;;;;;. g (1) K fcr 
K :;;;.1. Define X= 1 + [cx/2 (1- cx)). Choose 0 < 0 < 1, suchthat 

Define a sequence (K, D, L, Y, C) as follows: Kf = ff fort# O;D0 = (1/2) !!f, 
Df =[Off/rA] for t#1;L0 = !:_, Lt = [Off/t] for r;;;.1; Ct = G (Kt' Dt' Lt) for t#O; 
Yf = F (Kt' Dt, Lt) fort;;;;;. 0. Clearly, (K, D, L, Y, C) is a feasible program. 

Now, fort;;;;;. 1, we have Cf= G (K, [0 ff/tA.], [0 !f/t]) # G (Off, [Off/rA], [Off/t]) 
= o K c (1, [ 1/tA ], [ 1/t]) = [O !f/tA 1 c (tA, 1, r""-1);;;;;. [O ff/l 1 c (l, 1, 1);;;. [O !f/tAJ 
t"'A.g (1) = g (1) 0 !f t("' 1\-A.). Hence c t # [g (1) 0 !f t I (a-1 )A+ 11/0 ff] = g (1) tl 1 +(a-1 )"?\ 1. 

By definition of )\, 1 + (cx- 1) X= (cx/2). So, cf;;;. g (1) rC"'/ 2) fort;;;. 1. So there is 

T1 < 00 , suchthatfort # T1 , cf # + C)/2. Hence fort;;;;;. T1 u (ct) # 

# u ((S + C)/2) = e, say [clearly, e > 0]. And so, fort# T1 , W (Ct, Lt) # [Offe/t]. Hence 
T 
L W (Ct, Lf)-+ oo as T-+ 00• If there is an optimal program (K*, D*, L *, Y*, C*) then 

t=O 
00 

L W ( c;, L 7) is convergent, by Lemma 5 .1. Since (K, D, L, Y, C) is a feasible program, 
t=O 

T 
and L W (Cf, L t)-+ oo as T-+ oo, so <K*, D*, L *, Y*, C*) cannot be optimal. II 

f=O 

Remark: If G (K, D, L) = K"' Dß P, with (cx, ß, r);;;;;. 0, a + ß + 'Y = 1, then (A.10) is 
satisfied if and only if a > ß. Thus, in the Cobb-Douglas case, (A.lO) implies (A.11 ). 

6. The Existence of an Optimal Program when Future Welfaresare Discounted 

The main result of this section is that, when future welfares are discounted, an optimal 
program exists. 

Readers familiar with the literature on optirnum population will recognize that the 
traditional methods of proving the existence of an optimal program break down, when 
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population is "freely" controllable. 3 ) Specifically, given any t, and M (t) < oo, one can 
find a feasible program with Lt > M (t). Thus, the essential "boundedness" property of the 
relevant variables, which is exploited heavily in traditional methods [ see, for example, Gate; 
Brack; Brock/Gale and others] to arrive at an optimal program as a limit of a convergent 
(sub )sequence of feasible programs, is not available. 

Dasgupta [ 1969] solves the problern by constructing a particular stationary program 
(stationary in per-capita magnitudes), and checking that it satisfies the sufficient condi-
tions of optimality of the sort discussed in Section 4. This is in the context of a model 
without exhaustible resources. When such resources are present, even this clever device is 
lost, as programs stationary in per-capita magnitudes do not satisfy the appropriate "mar-
ginal conditions" of Section 4. [Note that if Kt, Dt, Lt are all growing or decreasing at the 
same rate, then the marginal products of all three factors must be constant over time; but 
the "Hotelling Rule" (4.3) demands that the marginal product of the resource be increas-
ing.] 

Our method retains the spirit of the traditional (Ramsey) device, though in execution it 
appears different. We separate feasible programs into two categories: "good" and "bad". 
"Good" programs are those for which population does not grow "too fast" [in a manner 
made precise in the definitions below]; "bad" programs are feasible programs which arenot 
"good". 

We show that if a feasible program is bad, there is a good program which is "better". 
There is a good program; and, in the class of good programs, there is a "best" program. 
This is then shown to be an optimal program. 

In order to simplify our existence proof (which is still quite elaborate), we assume in 
this section that the production function is Cobb-Douglas: 

(A.12) G (K, D, L) = Kx Dß L'Y, where (cx, ß, 'Y) O,and (cx + ß + 'Y) = 1. 

We assume throughout, of course, that 0 < ö < 1. Given (A.l2), we denote the expres-
sion [(f 1-"'/l?') + t!f'J 111-"' by E. Given any feasible program (K, D, L, Y, C> we denote 

t 
A = L<'YI 1·ß) fort;;;.o. 

t s=O s 

3 ) Wehave assurned throughout this paper that population can be controlled arbitrarily that is no 
bounds are irnposed on the rate of growth of population per period. lf there are such bounds then the 
existence question in Section 6 becarnes easier to handle using standard methods since definite bounds 
are available on the variable Lt in each period. One would suspect that in this case optimal paths 
would exist where these constraints are binding in some periods (see the Iiterature on population 
growth without exhaustible resources where population is arbitrarily variable and where there are con-
straints on its rate of growth, Dasgupta [ 1969] and Lane [ 1977]. 

lf population control is assumed costly in terms of resources or consumption then it introduces ad-
ditional elernents in the problern which forrns a subject of enquiry beyond the scope of the present 
paper. Since in the case where population is costlessly controlled, along an optimal path in the dis-
counted case, Lt = 0 afterfinite time, it is ternpting to conjecture that a similar behaviour would occur 
when population control is costly with the decline in population taking place at a slower pace possibly 
happening only in the Iimit over an infinite horizon. The analysis of the case where population control 
is costly and is constrained within Iimits rnay be an interesting subject of future enquiry. 
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Lemma 6.1: Under (A.I2), if(K, D, L, Y, C> is a feasible program, then 

K ..::EA(l-ß)/(1-a) 
t+1""" t fort;;;;. 0 (6.1) 

(6.2) 

Proof: Consider the feasible program (K, D, L, Y, Ö given by Ko = f, Dt = Dt' Lt = Lt 
fort;;;;. O;Kt+1 = Yt = F (Kt, Dt' Lf) fort;;;;. 0, and Cf= 0 fort;;;;. 0. Then Kf+ 1 ;;;;. Kf for 
t;;;;. 0. 

Now, fort;;;;. 0, we haveKf+ 1 - Kf = so that = 

= [lj/(1-ß)(ß. Using Holder's inequality, we havefor T;;;;. 0, 

or, 

"j(1-a _ "j(1-a-<. [ f fj ]ß [ f p/Cl-ß)]1-ß-<. Mß _A1-ß 
T+ 1 0 f=O f f=O f "' T 

K-1-a ,.::K-1-a + MßA-1-ß ".::E(l-a)A-(1-ß) 
T+ 1 """' 0 "' T """' T · 

So Kf+ 1 -<.E fort;;;;. 0. Since Kt+ 1 -<. Kf+ 1 fort;;;;. 0, so (6.1) follows. Also 

Cf ,;;;; Yt -<. Yf = K f+ 1 for t;;;;. 0, so ( 6.2) follows. II 
Before proceeding further we introduce some notation. Denote ß/(1 - o:) by JJ.; 

(1 - ß)/(1 - o:) by 77; (1- o:)/ß by v. Since we are dealing with the discounted case, we are 
given 0 < o < 1. Choose A > 1, so that (} = All o < 1. [Then M < 1 also.] Note that 

a = ((t + 1Y1/Af) is convergent. Denote [2aE/c] by h, and [hllb/(1-o)] by A [where b 
t=O ,. -

is given by (A.6)]. Note that B = L [Ailo ]t is convergent. Denote All by 1T; 
t=O ,.. , ,... ,." 

D = [f, u (f,)/2]. Define Q = max [ {2A/(1 - 8) D }, 2hll, kJ. 
For any feasible program <K, D, L, Y, C), we define a sequence t (n) as follows. Let 

t (0) = 0; for n;;;;. 0; define [l (n + 1) ={t;;;;. t (n): Lt > Lt(n)}, and if [l (n + 1) is non-
empty, t (n + 1) = min [l (n + 1). Ifthe set [l (n + 1) is empty for some n = n, 
t (n + 1) = oo, and t (n) is undefined for n > n + 1. 

Lemma 6.2: Under (A.3)-(A.6), (A.I2), if <K, D, L, Y, C> is a feasible program and n;;;;. 0, 
such that t (n) and t (n + 1) are defined, then for t (n)-<. S-<. t (n + 1) - 1, 

(i) LI-L ..::: hA.t(n) implies f ot W (C, L) -<.A ot(n) 
t(n)"""' t=t(n) t t 

(ii) L'f(n)>hAt(n) implies f otW(Ct,Lt)-<.-Dot(n)Lt( )" 
t=t(n) n 

Proof: To prove (i), note that fort (n)-<. t-<. t (n + 1) -1, otLt-<. olt-t(n)Jst(n)Lt(n) 
-<. hv [oAilt(n) o lt-t(n )]_ Hence, fort (n)-<. S-<. t (n + 1)- 1, we have 

s () s ,. L otw (C, L ) -<. hv [oAv]t n b L olt-t(n)J-<. et(n)hvb/(1- o) = A ot(n). 
t=t(n) t f t=t(n) 
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To prove (ii), we write fort (n).;;;; t.;;;; t (n +I) -I, r/Lf u (ct) = ötLt[u (cf)- u 

So ötLf u (ct).;;;; f/Lf u' (s) (ct- s) = f/u' (s) [Ct- fLt]. Then fort (n).;;;; S.;;;; 
.;;;; t (n + I)- 1, we have 

s s s 
ötLtu(ct).;;;;u'(f) {/Ct-fu'(f) ötLt. 

t=t(n) t=f(n) t=t(n) 
(6.3) 

Now, fort (n).;;;; t,;;;; t (n +I)- 1, we have by Lemma 6.I, öt Ct.;;;; ö E Ai= 
t f 

LC'YI1-ß)]17 =ötE(t+I)17 L('YI1-a)_Thus,fort(n).;;;;S.;;;; 
i=O I i=O f(n) t(n) 

.;;;; t (n + 1)- I, we have 

s s f/ C .;;;;E L('Y/ 1-a) Öt (t + I)17 .;;;;E Lb/ 1-a) (öt,_f(n) a. 
t=t(n) t t(n) f=t(n) t(n) 

Using this information in (6.3), we have 

s 
c/L u(c).;;;;u'(c)aEL('Y/1-a)(öA.i(n)_cu'(s)l.it(n)L 

t=t(n) t t t(n) t(n) 

=u'(c'[ aEL('Y/1-a)(l.iA)t(n)_.!. cöf(n)L ] -Döt(n)L 
'::J t(n) 2 t(n) t(n) 

&-Döf(n)L 
""""' f(n) · 

We cali a ft:asibie program <K, D, L, Y, C) good if Lf.;;;; Q rrf fort;;. 0; we call it bad if it 
is not good. 

Lemma 6.3: Under (A.3)-(A.6), (A.I2), ifafeasible program <K, D, L, Y, C) is bad, then 
there is a feasible program <K', D', L', Y', C') which is good, suchthat 

T 
lim sup [<'/W (Cf, Lt)- öfW (c;, L;)].;;;; 0. (6.4) 

T-->oo t=O 

Proof: Since (K, D, L, Y, C) is bad, there is some t for which L f > Qrrf. Let N be the first 

period this happens. Then, N > 1, and L N- 1 .;;;; QrrN-1 < QrrN <LN" So, there is n > 0 

suchthat t (n) = N. There are now two cases to consider: (i) t (n + I)= 00, 

(ii) t (n + 1) <=. 
s 

In case (i), by Lemma 6.2, t/w (Cf, Lt) < 0 for all S;;. t (n). Define a sequence 
f=f(n) 

<K', D', L', Y', C') as follows: (K;, n;, L;, Y;, c;) = (Kf, Df, Lf, Yf, Cf) fort< t (n), 

(K;, D ;, Y;, c;) = 0 fort;;. t (n ). Then <K', D ', L ', Y', C') is a feasible program which 

is good. Also since ötw (c;, = 0 fort;;. t (n), so (6.4) is satisfied. 

t(n+1)-1 ,. 
In case (ii), by Lemma 6.2, ötw (Ct, Lt),;;;;- D öt(n)Qrrt(n).;;;; 

S 
- 2A8t(n) /(1- 8). Now, for S;;. t (n + 1), we have by Lemma 6.2, ötw (Ct, Lt) 

t=t(n+1) 
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or;;;; f t/W(Ct,Lt) 
i=n+ 1 t=t(n) 

or;;;;- A ot(n) /(1 - 0). Define a sequence <K', D', L', Y', c'> as follov.-s: 

(K;, n;, Y;, c;) = (Kt' Dt' Lt' Yt' Ct) fort< t (n), and (K;, n;, L;, Y;, c;) = 0 for 
t t (n ). C1ear1y (K', D ', L ', Y', C') is a feasible program which is good. Also, since 

otw cc;. L;) = 0 t (n), so (6.4) is satisfied. II 

Lemma 6.4: Under (A.3)-(A.6), (A.12), there is a good program. 

Proof: Define a sequence (K, D, L, Y, C) as follows: Kt = !f, Lt = b Dt = !!f/2t+l, 
Yt = F (Kt, Dt' Lt), Ct = G (Kt' Dt' Lt) 0. Then (K, D, L, Y, C) is a feasib1e pro-
gram which is good. II 

Lemma 6.5: Under (A.3)-(A.6), (A.12), there is a good program (K*, D*, L *, Y*, C*) 
suchthat 

T 
lim sup ot [W (Ct, Lt)- W (C:. L7)] or;;;; 0 

T-+oo t=O 
(6.5) 

for every good program (K, D, L, Y, C). 

T T 
Proof: For any good program (K, D, L, Y, C), ot I W (Ct, Lt) I or;;;; (orri Qb 

t=O t=O 

or;;;; [Qb/(1- orr)] = H. Hence otw (Ct' Lt) is absolutely convergent, so otW(Ct, Lt) 
PO PO 

is convergent, with otw (Ct' Lt) or;;;; H. 
t=O 

Let A = [ otw (Ct, Lt) : (K, D, L, Y, C) is a good program]. By Lemma 6.4, Ais 
t=O 

non-empty. Also, each element of A must be or;;;;H. Defme w = sup A; then w or;;;;H. 
Clearly, there is a sequence (Ki, Di, Li, yi, ci> of good programs, suchthat 

otw (C:. w- (1/i) [i = 1, 2, ... ]. DefineX0 = !f; Xt+l = G(Xt,!!f• Qrrt) + Xt 

0. Then, if (K, D, L, Y, C) is a good program, (Kt' Mt, Lt, Yt' Ct) or;;;; 

or;;;; (Xt' !!f, Qrrt, Xt' X 1) fort;;;:. 0. Hence there is a subsequence j of i, suchthat for each 

t ;;;:.o, (Kf, Mf. Lf. Yf, C/)-+ (K:, M:. L:. Y:, cn asj-+ 00• DefiningD: =M: -M:+l' 
it is easy to check that (K*, D*, L *, Y*, C*) is a feasible program and it is a good program. 

We claim that otw (C:, Ln= w. Otherwise, by definition of w, there is e > 0, 
t=O 

suchthat 

o1w (C1*, L 1*) or;;;; w- e. 
t=O 

PickT suchthat (orri Qb < e/4. Pick J 1arge enough so that for j;;;:. J, 
t=T 
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T t i i T t I 8 W (C1, L1)- 8 W (c;, Ln I< e/4. 
t=O t=O 

Then, for j we have 

w- (1/]) 81W (Ci, Li)= f 81W (Ci, Li)+ 81W (Ci, 
t= 0 t t t= 0 t t t= T t t 
T 

l>tw (c;, L1) + (e/4) + (e/4) = l>tw (c;, Ln-

- l>tW (c;, Ln+ (e/2) [w- e] + (e/4) + (e/2) = w- (e/4). 
t=T 

So (1/j) (e/4) for j a contradiction. Hence, our claim is established. Then (6.5) fol-
lows by the defmition ofw. II 

Theorem 6.1: Under (A.3)-(A.6), (A.12), there exists an optimal program. 

Proof: Consider the program (K*, D*, L *, Y*, C*) whose existence is established in 
Lemma 6.5. We claim that this is an optimal program. 

For, consider any feasible program (K, D, L, Y, C). Either this is good or bad. lf it is 
good, then (6.5) holds. lfit is bad, then there is a good program (K', D', L', Y', C') such 
that (6.4) holds. Hence, 

T 
lim sup l>t [W (Ct, Lt)- W (c;, L7)] 

T-+oo t=O 

. T t ' ' lun sup 8 [W (Ct, Lt)- W (Ct, Lt)] + 
T-+oo t=O 

T 
lim sup l>t [W (c;, L;)- w (c;, L7)] o 

T-+oo t=O 

by using Lemmas 6.3 and 6.5. Hence, in either case, 

T 
lirn sup l>t [W (Ct, Lt)- W (C;_ L1)] 0. 

T-+oo t=O 

This establishes our claim. II 

7. Optimality and the Extinction of the Economy 

Wehave shown in Section 5, that under quite realistic assumptions, there does not exist 
an optimal program when future welfares are undiscounted. While this has been a discom-
forting result, we have noted that a sirnilar feature is observable in optimal population 
exercises, even in the absence of exhaustible resource constraints. Furthermore, as in the 
study of optimum population [without exhaustible resources] by Dasgupta [1969], we 
have been able to establish the existence of an optimal program when future welfares are 
discounted. Thus, at this stage, the model of production and the Classical Utilitarian ob-
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jective function may be said to have stood the "mathematical screening" of Koopmans, 
provided we agree to discount future welfares. 

In this section we discover, however, that the discounted case has a disturbing aspect to 
it also. Namely, optimal programs must be extinction programs. This means that it is opti-
mal (in the discounted case) to have a zero population from a certain time period onwards. 
This result is true independent of whether or not there is a feasible pro gram, with positive 
stationary population, such that the per-capita consumption at each date generates a utility 
bounded away from zero. If there is such a feasible program and one finds it optimal to be-
come extinct in finite time, then the Classical Utilitarian objective (with discounting) sure-
ly places too small a penalty on the extinction of the human race. This could be viewed as 
an unsatisfactory aspect of the objective. One might argue that the problern arises because 
we define W (C, L) = 0 rather than W (C, L) =- oo when L = 0. But it is very difficult to 
justify a discountinuity at L = 0 in the objective function, when everywhere eise, it is con-
tinuous. Furthermore, with this discountinuity we might encounter the problern of non-
existence of an optimal program even in the discounted case: notice that if W ( C, L) is not 
continuous everywhere, the existence proof of Section 6 breaks down. 

Thus, with the result of this section, we have doubts whether the Classical Utilitarian 
objective is the appropriate one to use in studying optimum population policies when re-
sources are exhaustible. 

Our result should be contrasted with that obtained by Koopmans [1974 ]. An optimal 
program in the Koopmans exercise is an extinction program, but this is tobe expected 
since there is no aspect of capital accumulation in his model to offset the depletion of re-
sources, and to produce a feasible program, with a utility sequence bounded away from 
zero. In our model, not only is there the capital accumulation aspect, but capital is smooth-
ly substitutable for the exhaustible resource. Then, with a Substitution condition of the 
type proposed in Cass/Mitra [ 1979], (A.1 0) will be satisfied. This, in turn, will ensure that 
there is a feasible program with positive stationary population, and a utility sequence 
bounded away from zero. However, it will still be optimal for the economy to become ex-
tinct, according to our result. 

We define a feasible program (K, D, L, Y, C) tobe an extinction program if there is an 
integer T < 00, such that L t = 0 for t > T. 

Theorem 7.1: Under (A.l)-(A.9), (A.11), if(K, D, L, Y, C) is an optimal program, then 
it is an extinction program. 

Proof: Suppose on the contrary that Lr > 0 fort> 0. Then (K, D, L, Y, C) isapositive 
program, which is optimal. We will now proceed to prove a nurober of claims, which lead 
ultimately to a contradiction. 

(i) ct cannot converge to zero, as t 00• Otherwise, there existsN1 suchthat ct < for 
t >N1. Construct a sequence <K', D', L', Y', C') as follows: (K;, n;, L;, Y;, c;) = 
= (Kt' D t' Lt, Yt, Ct) fort <N1, (K;, D ;, L;, Y;, c;) = 0 fort;> N 1. Clearly 
(K', D', L', Y', C') is feasible. Since W (C;, L;) = 0 fort >N1 , while W (Ct' Lt) < 0 for 
t > N 1 , so (K, D, L, Y, C) could not be optimal, a contradiction. 



(ii) GK cannot converge to zero as t-+ 00• Otherwise, there existsN2 , suchthat 
t 

G K ..;; (1 - o )/(2o) N 2 . Then, by Theorem 4.1, we have 
t 
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u' (ct) = u' (ct+l) o (1 + GK ) ,;:;;; u' (ct+l) o [1 + (1- o)/(2o)] = u' (ct+l){(I + o)/2} 
t+1 

N 2 • Hence u' (ct)-+ oo as t-+ 00, and ct-+ 0 as t-+ 00• This contradicts (i). 

(iii) GD -+ oo as t-+ oo. 
t 

Note that by Theorem 4.1, GD is increasing with t, so if GD + oo as t-+ oo, there is 
t t T 

A < 00, suchthat GD -+ A. By (4.3), we have GD =GD D (I+ GK ). So 
t T+ 1 0 t= 0 t+ 1 

00 00 

II (1 + GK ) < oo, and GK < 00• This implies that GK -+ 0 as t-+ oo, which 
t= 0 t+ 1 t= 0 t+ 1 t+ 1 

contradicts (ii). 

(iv) [GK /GD ] -+ 0 as t-+ oo. 
t t 

WehaveGK /GD ..;;pK /FD = 1/FD =1/GD -+Oast-+oousing(4.3)and(iii). 
t t t t t-1 t-1 

(v) [Dt/Kt]-+Oast-+oo. 

By using (A.l1), a ..;;{[GK Kt]/G (Kt' Dt' Lt)}/ {[GD Dt]/G (Kt' Dt, Lt)} = 
t t 

= [GK /GD ] [Kt/Dt]. By (iv) [G K /GD ] -+ 0 as t-+ 00, so Kt/Dt-+ oo as t-+ oo. That is, 
t t t t 

[Dt/Kt]-+ 0 as t-+ 00• 

(vi) G L -+ 0 for a subsequence oft. Otherwise, there is 8 > 0, suchthat G L 8 for 
t t 

all t. This means that 

G (Kt' Dt, Lt) _ ( Kt Dt ) 
8 ""'GL ...", L - G L , L , 1 . 

t t t t 
(7.1) 

,. 
Consequently [Kt/Lt]-+ oo as t-+ 00• For if [Kt/Lt]..;; Q < oo for a subsequence oft, then 

[Dt/Lt] = [Dt/Kt] [Kt/Lt]..;; [Dt/Kt] Q-+ 0 for this subsequence, by (v). So 

G (Kt/Lt, Dt/Lt, 1)-+ 0 for this subsequence, which violates (7.1). Hence (Kt/Lt)-+ oo as 

t-+ oo, and [Lt/Kt]-+ 0 as t-+ oo. 

Now, GK ..;;{G (Kt, Dt' Lt)}/Kt = G (I,Dt/Kt, Lt/Kt). Since [Dt/Kt]-+ 0 as t-+ oo, 
t 

by (v), and (Lt/Kt)-+ 0 as t-+ oo, so GK -+ 0 as t-+ 00• This contradicts (ii). 
t 

Thus (vi) is established. We now denote (1 + o)/2 by A.; (I - o)/2o = e. Define 
<A.). 

t+ 1 t+ 1 

(vii) SandS' each contain an infinite number of elements. 

lf S contains a finite nurober of elements then there isN1 suchthat N 1 , t ES'. 
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N 1 , u' (er)< X u' (ct+ 1). Sou' (er)-+ oo as t-+ oo, and ct-+ 0 as t-+ oo, which 
contradicts (i). 

If S' contains a finite nurober of elements then there isN2 suchthatfort t ES. 
+8)/28}-1 =(l--8)/28=e.So 

t+ 1 t+ 1 
e.;;, G K <{G (Kt+1' Dt+1' Lt+1)}/Kt+ 1 = G (1 ,Dt+1/Kt+ 1' Lt+ 1/Kt+1). By (v), t+ 1 
[Lt+ 1/Kt+ 1]-+ oo as t-+ oo; so, (Kt+ 1/Lt+ 1)-+ 0 as t-+ 00• Now, (Dt/Lt) = 
= (Dt/Kt) (Kt/Lt)-+ 0 as t-+ 00, since (Kt/Lt)-+ 0 as t-+ oo, and (v) holds. Also, 
(Kt/L 1)-+ 0 as t-+ oo, soG (KrfLr, Dt/Lt, 1)-+ 0 as t-+ 00• Hence, ct+ 1 < 
< G (Kt+ 1/Lt+ 1' Dt+ 1/Lt+ 1, 1) + Kt+ 1/Lt+ 1 -+ 0 as t-+ 00• This contradicts (i). Thus 
( vii) is established. 

Choose e > 0, suchthat G [1, e, (4/f)] < e, and G [(f/4), (� q)4), 1] < (f/4). Choose 
N suchthatfort (Dt/Kt) < �. 
(viii) lft >f:l. t ES, then ct+ 1 < [sf2]. 

Fort>N, tES, 8FK So,e<GK < t+ 1 t+ 1 t+ 1 

G (1,Dt+ 1/Kt+ 1, Lt+ 1/Kt+ 1) <G (1, e,Lt+ 1/Kt+ 1), and (Lt+ 1/Kt+ 1) [4/8- Hence, 
[Kt+1/Lr+d.;;, [qj4], and ct+1 <{G (Kt+1' Dt+1' Lt+1) + Kt+1}/Lt+1.;;, 
< G (q)4, (ef)/4, 1) + f/4 < (cj2). Choose.N> N, such thatNES. 

(ix) Jf t N, then ct+ 1 < [f/2]. 

Suppose, on the contrary, there is some t N, suchthat ct+l > [qj2]. Consider t = T to 
be the first period this happens. Then T is not inS, by (viii). So, T ES'; also,NES, so 
r>N.Now, 

u'(c )=8FK u'(c +1)<'Au'(c + 1)<u'(c +1). 
7 r+1 7 7 7 

So C7 >er+ I > [f/2]. But since T- 1 N, and c7 > (q)2), so T is not the first period 
for which c".+ 1 > [f./2], a contradiction. 

(x) (K, D, L, Y, C) is not optimal. 
By (ix), W (Ct' Lt) < 0 fort + 1. Construct a sequence <K', D', L', Y', C'> as fol-
lows: (K;, n;, Y;, c;) = (K1, Dt, L1, Y1, Ct) fort <N + 1; (K;, n;, Y;, c;) = 0 
fort + 1. Since W (c;. = 0 fort + 1, so <K, D, L, Y, C) is not optimal. 

By (x), (K, D, L, Y, C) must be an extinction program. II 
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